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Starting from the " + d e m > H r m o d e l  for Rydberg states, ab initio calculations o f  the 
energy and the wave function for some excited states of  H 2 have been carried out 
with the help of  diatomic orbitals. The potential  curves and wave functions for 
the following states: 21X +, 31Y,~ +, 13E~ +, 3 + 1 i~+  91~+ 2 Zg, laZ+, ,~ay+ .~a~§ 
l lIIg,  13Ilg, l l I I u a n d l ' f f F l u h ~ e b e  ~ a v  en * - u , -  - u ,  ~ - u ,  o - u ,  calculated by a complete CI (configuration 
interaction) calculation in the sense that  all configurations of  the state symmetry 
have been used which can be formed from a given basis set. From the wave func- 
tions thus obtained the natural spin orbitals are calculated subsequently to the 
variational calculations. The dependence of  the occupation numbers of  the natural 
spin orbitals on internuclear distance is interpreted according to the model  and is 
used for the explanation of  the special features like double minima and maxima 
which occur in the potential  curves of  H 2. For the curves of the occupation num- 
bers a non-crossing rule in analogy to that for potential  curves is valid. The potential 
curves for the states 13 Ilg and 1 a Fl u have been improved by  the use of  linear com- 

binations of  diatomic orbitals with different nuclear charges, which allow a flexible 
transition to  linear combinations of  atomic orbitals. 
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1. Introduction 

For the ground state of  the H a molecule numerous natural orbital (NO) analyses of  
the wave function are contained in the literature (see survey in [1],  p. 253). Although 

* Dedicated to Professor Iwan N. Stranski on the occasion of his 80th birthday. 
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there are also calculations of excited states for the H z molecule, only a few natural 
orbital analyses for limited ranges of internuclear distance can be found for these 
states [1-3]. An analysis of this kind for an extended region of internuclear distance 

3 + has been carried out for the state 1 Nu [4]. For those excited states which have been 
analysed in [3] at the nuclear distance R = 2.01 a similarity of the NO's with func- 
tions from a HI-type model has been found. The calculations of some low-lying excited 
states of H 2 are extended here to a greater range of the internuclear distance R. The 
suitability of HI-type and other diatomic orbitals as basis functions for variational 
calculations as well as for NO analyses of these two-electron states is examined. 

2. Theory 

The Rydberg states of the H 2 molecule have been discussed by Mulliken [5] with the 
help of the demi-HI-model. This idea is based on the work of Hylleraas [6] in which 
approximate functions of the following form have been used for the calculation of the 
ground state and some excited states of H 2: 

'I~ = 1/X/2-(IXI~I + IX-11X21) (1) 

X1 and X: are the exact solutions for the ground state and the excited state respec- 
tively for the one-electron two-centre problem with the nuclear charge Z(X1) = 1 and 
Z(X2) = 0.5. For calculations of potential curves for excited states of H 2, more 
general basis functions are used here. These generalized diatomic orbitals (GDO's) are 
defined as the exact Solutions of the one-particle Schr6dinger equation 

{ A Za Zb Q }x=ex (2) 
2 r a r a Far b 

belonging to negative energy eigenvalues e. The additional potential Q/(rarb) is a special 
case of the core potential which has been proposed by Lassettre and Peek [7] and by 
Teller and Sahlin [8] as a model potential in one-electron theories for many-electron 
molecules. The eigenfunctions of Eq. (2) are specified as 

• = InlTs;Za,Zb, Q) (3) 

where n and I are the quantum numbers of the united atom; 7 is an irreducible repre- 
sentation of C.o v (or D~ h if Z a = Zb) and s is the sign of the eigenvalue of the z-com- 
ponent of the angular momentum. The solutions of Eq. (2) are derived by semi- 
analytical methods described previously [9-11]. The basis functions given by Eq. (3) 
contain three non-linear parameters Z a, Z b and Q. However, some preliminary calcu- 
lations [12] showed that the consideration of Q as a variational parameter did not 
improve the results in general as is the case for the ground state of the molecules H 2, 
Hell + and Hez [13, 14]. Therefore at most two non4inear parameters have been opti- 

1 All distances and energies in atomic units. 
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mized. Most generally symmetry-adapted linear combinations of two DO's [ 14] are 
used as basis functions in the present work: 

[nlT(D=h);Za, Zb, O) =N+_{lnlT(Coov);Za, Z b, O) + tnlT(C=v);Z b, Za, 0)} (4) 

where _IV_+ is a normalization factor. 

Basis functions of the type given in Eq. (3) with Q = 0 and in Eq. (4) are used within 
the framework of configuration interaction (CI) calculations (after Gram-Schmidt 
orthogonalization). All the DO's are used in these calculations which are necessary to 
guarantee a correct asymptotic behaviour of the potential curves for R -+ 0 and R ~ oo. 
In addition those configurations are taken into account which may kave similar ener- 
gies to that of the state under consideration for medium internuclear distances. There- 
fore it is advantageous to minimize two or more energy values together. In each of the 
calculations all configurations are used which can be formed from a given basis set 
("complete" CI). The basis functions chosen in this way are given under the headings 
of the states which are calculated. 

From the many-electron wave functions thus obtained the natural spin orbitals (NSO's) 
are calculated subsequently (see [12, 13]). The natural orbitals, which differ in the 
two-electron case from the natural spin orbitals only by a simple c~- or/3-spin factor, 
can be classified in accordance with the theorems of Bingel and Kutzelnigg [ 151 . They 
are interpreted in terms of the occupation numbers for a greater region of the inter- 
nuclear distance according to the model above and are used for an explanation of the 
special features of the potential curves for excited states of H 2 like double minima 
and maxinla. 

The curves of the occupation numbers as functions of  the internuclear distance show 
the following behaviour: if the spatial part of the wave function for the two-electron 
system belongs to a one-dimensional irreducible representation of the symmetry group 
of the linear molecule (e.g. 2~, II +; for H2 such a choice is always possible), then the 
one-particle density matrix is factorized according to symmetry types [16]. Because 
of the Hermiticity of the one-particle density matrix the derivation of the non-crossing 
rule of Wigner and yon Neumann [17] remains valid here for its eigenvalues, the occu- 
pation numbers. The curves of the occupation numbers as functions of the internuclear 
distance belonging to NSO's (or NSO space parts, here NO's) of the same spatial sym- 
metry (e.g. l1%) and 12og)) will not cross in general whereas crossings of occupation 
number curves belonging to NO's of different symmetry (e.g. I log) and ll ou)) may 
occur. As far as two-electron systems are concerned additional degeneracies of the 
occupation numbers (for all internuclear distances) may occur as has been shown by 
Bingel and Kutzelnigg [16, 18]. Then for all internuclear distances NO's of different 
symmetry type belong to the same occupation number (e.g. for 21s 1 og) and I 1 ou) as 
well as 12og) and 12Ou)). The different blocks of the density matrix are not affected by 
this so that the occupation number curves belonging to I log) and [2~g) and those 
belonging to I lou) and 12ou) will not cross; similarly for the curves belonging to (f log), 
1 lou)) and to (I 2ag), 12oz,)). Moreover the BEg-states show an additional degeneracy 
so that two NO's of  equal symmetry belong to one occupation number [18]. Therefore 
the general case is not given. However, further degeneracies are not to be expected. 
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Examples for the non-crossing rule of occupation numbers can be found for the states 
1 + 2132+ 91,p.+ 3 + 3 + 2 Zg , .  -g ,  ~ -u,  2 Zu and 3 Zu (see below). 

3. Results 

Energy and occupation number curves have been calculated for the following low- 
lying ~- and If-states of H2: 2lEg, 31E;, 13E~, 23Zg, laE +, 21E +, 13Z +, 23E +, 33Zu +, 
11iig, 11Hu,13iig and laIIu . The calculations have been performed for the range of the 
internuclear distance from 0.5 (or 1.0) to 14.0 in steps of 1.0, 0.5 or 0.25 according 
to the special features of the energy or occupation number curves in a certain region. 
For each value of R one common nonqinear parameter Zop t of the excited orbitals 
of the H~-type diatomic orbital basis set (HTDO;Z a = Z b = Zop t in Eqs. (2) and (3)) 
has been optimized. The nuclear charge of the 1 ls%)-orbital (and of a second 12pau)- 
orbital in some of the calculations) has been kept constant. In addition linear combi- 
nations of DO's (LCDO's) have been used for the H-states. The HTDO's contain five 
non-zero coefficients in the expansion of their #- and p-part (p, v: prolate spheroidal 
coordinates) [9-11]. Some pilot calculations have shown that the energy values do 
not change within five places if the number of these expansion coefficients is increased. 

Tables containing the calculated optimal variational parameters Zopt, the energies, 
occupation numbers and coefficients of the expansion of the natural orbitals in terms 
of the HTDO's are to be found in [12] and are available on request. Figures of the 
potential and occupation number curves are given here only for a visualization of the 
results. 

3.1. 1 + 1 + 2 Zg, 3 Zg 
1 + The basis set of HTDO's for the simultaneous calculation of the states 2 ~x E, F and 

31Zg was set up to take into account the mixing of the functions lsog2sogly~g and 
lsog3sogl~,gas well as lsog3doglE~. For the second minimum 21~g F the configuration 
(2pOu) 2 is of great importance. In addition at greater internuclear distances the doubly 
excited configurations (2pou3pUu) and (2p%4fOu) have to be taken into account 
because the HTDO's [3POu) and ]4fOu) are degenerate for R ~ oo with [2SOg), [3sog), 
13dog) respectively. A second 12po'u) is used (in addition to ]2pOu)) in analogy to 
the double-zeta method with the fixed value o fZ  = 1.0. The nuclear charge for the 
core function [ lsog) is also kept constant at Z = 1.0. 

Summing up, the following basis set has been used: 

[ lsog; 1.0, 1.0,0), [2SOg;Zopt, Zopt, O), 13SOg;Zopt,Zopt, O), 13dog;Zopt,Zopt, O), 
[2pou;Zopt, Zopt, 0), [3pou;Zopt,Zopt, 0), [4fou;Zopt, Zopt, 0), [2pO'u ; 1.0, 1.0, 0). 

The potential curves and the curves of the occupation numbers are given in Fig. 1 and 
Fig. 2a, b respectively. In most cases the energy values from the literature [2, 19-21] 
are better than the present results for 21Eg.+ For 3 leg they are improved here in com- 
parison with the results of Davidson [2]. 
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If the basis is enlarged by the functions 12p~ru) and 13dng) and the non-linear para- 
meters are optimized extensively [12] a value ofEto  t = -0 .65583  for the total energy 
of 31E~ is obtained at R = 3.5. Below this energy value there is only one experimental 
state with an equilibrium distance of this size namely (2pTru)2?lE~ 31K with Etot = 
-0 .66117  ~22a, hi .  On the basis of the NO-analysis such a simple assignment like (2pTru) z 
does not seem adequate because there are no strongly occupied 7ru-type orbitals. 

3.2. 1 3y~g,+ 23y~; 
3 + 3 + For the calculation of the two states 1 gg and 2 Ng the same basis set as listed above 

for the corresponding singlet states has been used. The parameter Zop t has been opti- 
mized independently here. 

The great maximum (at R -~ 5.25) [23, 24] in the potential curve for the state 23~g 
and the dissociative behaviour of the two states is reproduced correctly (see Fig. 3). 
The flat maximum at R ~ 8.0 of the curve of the state 13~; is due to the model basis 
set because it has been found neither experimentally nor theoretically [25]. If  the 
basis is changed in the same way as has been done for some of the H-states a dis- 
appearance of the maximum can be expected. The corresponding occupation number 
curves are given in Fig. 4a, b. 

3 .3 .  1 152+ 7152+ 

A complete CI calculation has been carried out with a basis set that allows the right 
behaviour of  the potential curve for R ~ 0 and R -~ oo. This basis set consists of  the 
functions: 

I lsog; 1.0, 1.0, 0), ]2sag;Zopt, Zopt, 0), 13dog;Zopt,Zopt, 0), 
[2POu;Zopt,Zopt, 0), [3pou;Zopt, Zopt,0), ]4fou;Zopt, Zopt, 0); 

the HTDO 14pau; Zopt, Zopt,  0) is added to this set in order to take into account the 
mixing with the main configuration of 1SOg4pau31Z+B ". In order to make possible 

3 + 3 + 3 + a comparison the states 1 Zu, 2 E u and 3 Eu have been calculated with the same 
basis set (see below). 

The resulting potential curves show minima at the internuclear distances Re = 2.3 and 
Re = 2.05 respectively (see Fig. 5). The maximum which has been obtained here for 
the state 21Eu+B ' at R ~ 5.0 is not found experimentally [26, 27].  However, dis- 
crepancies between experimental and theoretical results may arise as the example of 
the state 112~ + B shows [28]. The corresponding occupation number curves are re- 
presented in Fig. 6a, b. 

3.4. 3 + 3 + 1 Zu, 331~ + 2 2~ u, 

The calculations with the same basis set of  HTDO's as for the l~ , -s ta tes  show the 
following results: as a special feature a slight maximum occurs in the potential curve 
of 23~ + at R ~- 6.0 similar to the maxima of  21E +, 13Zg and 3lEg (see Fig. 7). The 
potential curve of  332u + shows a large maximum (like that for 23Zg and 13Ilg (see 
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below)) a tR ~ 4.8. An experimental potential curve of the state 23N~ is contained in [22b]. 
Theoretical calculations exist for 13Zu+, 232u + and 332Ju~.. [3, 22b, 23, 28-31].  The oceupa- 
tion number Curves for the three states are given in Fig. 8a, b, c. 

3.5. 1311u, 13 Flg; i l llu, 11Flg 

It is possible to study the occurrence of maxima and to compare different methods 
with an especially small basis for the lowest 3 n-states. The corresponding 1 H-states 
have been compared for some of the calculations. The smallest possible HTDO-basis 
set for complete CI calculations of  all these states (the functions I lsog, 1.0, 1.0, 0), 
12pau; 1.0, 1.0, 0), 12v S, Zopt, Zovt, 0), 13dTrg; Zopt, Zopt, 0)) has been chosen. In 
the present case the NO's coincide with the basis functions with the given symmetry 
because of the small basis set. 

The two states 13[Ig and llIlg each possess a maximum a tR  ~ 4.5 (see Figs. 9, 10) 
which has also been obtained in previous theoretical papers ( [31 ,32] ;  [23]: only 
13Ilg). The secondflat minimum for the state l l l lg ( [5b] ,  [26] ) did not result here 
because of  the very small basis set. The slight maximum at R ~ 7.0 for 1 lllu has been 
found experimentally [29, 33] and theoretically [34-37] (see [5b] and the references 
given there). 

If a LCDO basis set is used which allows a flexible transition to LCAO functions the re- 
sulting potential curve of the state 13 ii u no longer shows a maximum (see also [22b ] ). This 
is confirmed by other variational calculations contained in the literature [34, 36]. Instead of 
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a single HTDO + I 2pTru; Zopt, Zopt, 0) and ] 3drrg; Zopt, Zopt, 0), a linear combination is 
used which consists of two DO's with different nuclear charges 12Prr+; Za, Zb, 0) and 
1 2pTr+; Zo, Za, 0). This procedure is called the MO-LCDO method in contrast to the 
earlier MO-DO method [14]. The correct linear combinations emerge from the CI 
calculation. The occupation number curves for all the H-states calculated by the 
MO-DO method are given in Figs. 11 and 12; those obtained by the MO-LCDO 
method for the a H-states are shown in Fig. 13. The optimized nuclear parameters 
Z a and Z o from the MO-LCDO method are reproduced in Fig. 14. 

The potential curves for the two triplet states 13Ilg and 13IIu calculated by the 
MO-LCDO method are shown in Fig. 9 together with the coresponding MO-DO results. 
Because the MO-DO method represents a special case of the MO-LCDO method the 
energetic results of the last method must be at least as good as the MO-DO results. In 
the present calculation, however, a MO-LCDO basis set as small as possible has been 
chosen which does not allow the representation of the HTDO 13dzrg+). Therefore one 
can understand why for small internuclear distances the MO-DO results are slightly 
better than the MO-LCDO values for the state 13IIg. The results calculated by the 
MO-LCDO method for 13IIu are slightly better for all R than those of Zemke, Lykos 
and Wahl [37] and nearly equal to those ofJ .  C. Browne [30] ; similarly for 13llg 
[33]. However, better results have been obtained by Wright and Davidson [38] with 
more extensive calculations. 
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Fig. 12a and b. Occupation numbers hi 
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4. Discussion 

The two-centre basis functions used here are not as variationally flexible as those used 
e.g. by Rothenberg and Davidson [31 or Kotos and Wolniewicz [21 ]. However, they 
have the advantage of being orthogonal functions if they contain the same nuclear 
charge or, generally, if they are of different symmetry types. They are the exact eigen- 
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funct ions o f  a two-centre  Hamil tonian  operator ,  so that  corre la t ion is the only essential 

per turbing part o f  the real H 2 Hamil tonian  operator .  With the help o f  op t imized  DO's  

the natural  orbitals can be in terpre ted  according to,  for example,  the " + deml-H2-model  

and visualized by the well-known H~-type orbitals directly. 
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4 .1 .21~g ,  31~g  

The double minimum in the potential curve of the first excited ay.g-State has been 
interpreted as belonging to the states l s~g2Saga~gE and (2Pau) 2 1EgF [2, 19-21,39, 
40]. However, no stable state of the united atom He corresponds to the configuration 
(2pou) z. For R ~ oo the separated ions H + + H- ( l s )  2 belong to this state. Energetically 
the ionic state lies between the separated atoms H(ls) + H(4s) and H(ls) + H(Ss). One 
would therefore expect a crossing of the potential curves belonging to 12;gF and all 
curves of states which dissociate into H(ls) + H(ns) (n = 2, 3, 4), which, however, is 
avoided because of the non-crossing rule. It will be shown here how this rule influences 
the potential curves and the corresponding natural orbitals as functions of the inter- 
nuclear distance. 

The calculations result in an optimized nuclear charge parameter Zop t which has indeed 
the value 0.5 (below R ~ 2.75) as in the demi-H~-model. For larger R it increases to a 
value of about 1.1 and for very large R it changes into the value 1.0 of the free atomic 

1 + functions. For the state 2 1~g the occupation number curves change quite drastically in 
the region (R ~ 3.8) where the potential curve has a hump. At small R only the first 
two NO's of gerade symmetry are occupied while the ungerade NO does not partici- 
pate essentially before this hump (Figs. 1, 2a, b). The most important members of the 
natural expansion of the wave function expressed by the HTDO's in the region of the 
minimum of the potential curve of the Rydberg state at R ~ 2.0 are: 

= 2-1/2 (l lSCrg2SOg[ -- I lgog2SOgl) (5) 

In the neighbourhood of the second minimum where the natural expansion is deter- 
mined mainly by the functions [ lsog) and 12pou) (with a small admixture of other 
functions with (2pOu) 2 dominating), it has changed to: 

= 2-1/2([lsaglsagl  + 12pOu2paul) (6) 

For R -~ oo this tends to the ionic function 

= 2-1/2(]lsalsa[ + [lsblsbl ) (7) 

For even larger R (above R ~ 10.0) the NO's I1 ag) and 12og) are dominating again in 
the natural expansion. For the corresponding crossing of the ionic and the homopolar 
potential curve Lewis [41] gives a value ofR ~ 11.0. In the limit R -+ oo the wave func- 
tion is mainly characterized by a valencebond function 

,Is -+ 1/2 {(llsa2bl _ IlSa2bl) + ([lSb2al -- l lsb2al)}  (8) 

with 

12a) = 2-1/2(I 2Sa) - 12poa)) (9) 

12b) = 2-1/2(12sb) - 12pOb)) (10) 

The "crossing" mentioned above is necessary because a lower energy belongs to the 
function of Eq. (8) than to the ionic function. 
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1 + The potential curve of  the state 3 Y~g also possesses a double minimum, which occurs at 
1 + the smaller internuclear distance o f R  ~ 3.4 in comparison with the state 2 Zg. The 

1 + 1 + curves of  the occupation numbers of  the states 2 Zg and 3 Ng are in accordance with 
each other up to a shift for 31~g to smaller internuclear distances. For both potential 
curves the first minimum is associated with the NO's I 1 og) and 12@ and the region of  
the second minimum with the NO I 10u). 

1 + The natural expansion for the state 3 Ng changes between R = 0 and R = 2.0. At 
R = 0.5 the natural expansion in terms of the HTDO basis is given by 

= 2 -1 /2  ( I  lsag3Sag [-- I lSog3SOg[) (1 1)  

For R ~ 1.0 (and at the equilibrium distance R ~ 2.0) an approximate expansion of  
the wave function is 

,Is = 2-1/2(I lsog,3dogl - ~1SOg3dogl ) (12) 

The state l s3 s lS  of the helium atom, which is of  a lower energy than l s3d lS ,  corre- 
sponds to the molecular state lSOg3SO~Ng for small R and changes to lsog3do~Ng 
at the equilibrium distance. For greater R the contribution of  12SOg) and 13sag) 
increases and the functions are strongly mixed. From R ~ 11.0 the function I 3d%)  
takes the place of  13SOg). 

A description of  the natural expansion by only a few configurations is not possible 
1 + for the state 3 Ng because of  the mixing of  the basis functions. A second maximum of 

the occupation numbers belonging to J l Ou) and 12Ou) is found at R ~ 11.0. This 
corresponds to a flat minimum in the potential curve at about the same internuclear 
distance. The wave function there is given approximately by 

= 1/2{(I lsog2Sagl - I lseg2sog I) - (]2pou3pOu[ - 12pOu3pau I)) (13) 

This function tends to the following valence bond function for R -+ oo 

q~ ~ 1/2{(I lsa2-b] - Ils--'~2b]) + (]lsb2-a[ - J]-s'sb2al)} (14) 

where ]2a) and 12b) are given by Eqs. (9) and (10). But this is just the behaviour for 
the limit R ~ of the wave function for 1 + 2 Y,g, so that obviously at still greater values 

1 + 31Zg occurs. of R an avoided crossing of the potential curves of  the states 2 Ng and 
Davidson [39] has pointed out the possibility of  more than two minima for the state 

I + 3 Ng, but he has only calculated the potential curve up to an internuclear distance 
R = 4.5 [21 . 

For a description of  the state 3lEg at very large R the function 12SOg) has to be replaced 
by I3dog) and 13pou) by 14fOu) in Eq. (13). The following equation is valid then: 

xp = 1/2{(l lsog3deg[ - I isog3dog]) - (I 2peu4f'-~ul - 12pou 4fOu[ ) ) (15) 

This expression tends to the following valence bond function for R -+ ~:  

q, ~ 1/2 {(ilsa2bl - Ilsa2b[) + ([lsb2al - llsb~aJ)} (16) 
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with 

I~a) = 2-1/2(12sa) + 12poa)) (17) 

[2'b) = 2-a/20 2sb) + [ 2pOb)) (18) 

Ionic parts are dominating nowhere in this case. For the slight second maximum in the 
potential curve at R ~ 7.0 an interpretation analogous to that of Wright and Davidson 
[38] for the case of 13[Ig (see below for the state 23I;g +) would be possible if it could 
be confirmed by a more extended calculation. 

4.2. 3 + 3 + 1 Zg, 2 ~g 
3 + 3 + A NO analysis for the states 1 ~g and 2 2;g is contained in the literature only for 

R = 2.0 [3]. The occupation numbers are twofold degenerate here because a wave 
function belonging to Ms = 1 has been chosen (Fig. 42, b). For small R the first two 
NO's of gerade symmetry are occupied almost exclusively. The participation of the 
ungerade NO's does not begin before R ~ 3.5 where the changes for 13Zg with increasing 
R are quite strong whereas for 3 + 2 Zg in the region of the maximum the occupation 
numbers change tess drastically. 

The natural expansion for the state 13~ ;  expressed in terms of the model functions is 
given for small R in good approximation by 

xl2 = [1SOg2SOg[  ( I 9 )  

The optimized nuclear parameter Zop t is 0.67 so that Eq. (19) represents a Rydberg 
state approximately according to the demi-H~-model. For greater R this function changes 
into 

qz = 2-1/2(I lsog2Sag[ - 12pou3pOu [) (20) 

which tends to the following valence bond function for R ~ oo: 

,tz -+ 2-~/2(llsa2b [ + LlSb2a[) (21) 

3 + The NO's Ilog) and [2Og) for the state 2 Zg mainly consist of the HTDO's L lsog) 
and [ 3sag) at small R. At R = 2.0 L2crg) comprises the function 13sog) with an admixture 
of 13dog) and by R =- 2.5 13dog) predominates. Obviously an avoided crossing of the 
potential curves belonging to the configurations (lsog3Sag) and (lsog3dog) according 
to the non-crossing rule has occurred. A complete CI calculation with the restricted 

3 + 3 + basis l lsog), [2SOg), 13SOg) and 13dog) for the states 2 2;g and 3 Ng confirms this 
behaviour qualitatively [ 12]. 

For R -+ % the determinant I lsog3SOg[ belongs asymptotically to configurations with 
functions with main quantum numbers 1 and 3: 

�9 .It ~ 1/201sa3al + tlsa3bl + Ilst~3al + Ilsb3bL) (22) 

with 

t 32) = 2-1/2 (I3sa)/X/3 - t 3poa)/X,/2 + 13doa)/X/~) (23) 

[3b) = 2-1/2([ 3 s b ) / X / 3 -  13Pob)/X/2 + [ 3dob)/X/~) (24) 
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On the other hand I lsag3dogl goes to pseudo-ionic and valence bond functions consist- 
ing of  atomic functions with the main quantum numbers 1 and 2. The NO analysis 
shows that the maximum in the potential curve of  the state 23~g can be interpreted 
in such a way that the participation of  I lsag3dogl does not lead to the correct dissoci- 
ation into an H atom in the ground state and one in an excited state with the main 

quantum number n = 2; to achieve that, an admixture of I2pau3paul and 12pou4foul 
is necessary. On the contrary in the state 13Zg there is no essential contribution of  
parts of  the wave function with the wrong dissociative behaviour for any internuclear 
distance. These results are in accordance with the discussion of  Mulliken [5b, 42] on 
maxima of  potential curves which originate from the avoided crossing of  two poten- 
tial curves one of  which is attracting and the other repulsive in the first approximation. 

4 . 3 .  1 + 1 + 1 ~u, 2 Eu 

In comparison with the Rydberg states treated up to now the two states lsag2pOu llZ,~ B 
and lsog3pau212+uB ' have unusually large (experimental) equilibrium distances of  
Re = 2.44 and Re = 2.12 respectively. The deviation from the normal value of  about 
Re = 2.0 is studied with the help of  the natural orbital analysis for several internuclear 
distances. 

On account of  the qualitative considerations in analogy to those of  Wright and Davidson 
9 1 5 2 + R  r [38] one would expect a maximum in the potential curve of  the s t a t e ,  - u  ~ as it is 

calculated here. The occupation numbers and NO's are also in accordance with this 
expectation. Up to R = 5.0 the configuration (lsog3pOu) predominates in the natural 
expansion whereas (2p(~u2SOg) and (2pou3dag) do not contribute significantly before 
this internuclear distance. 

The curves of  the two greatest occupation numbers show the special feature that they 
remain nearly constant in the whole region from R = 0.5 to R = 10.0 at a value of  
about 0.5 and 0.0 respectively (Fig. 6). At R = 11.0 the two curves approach each other 
at a value of  0.25. Such constant occupation numbers over such a great region of  R 
occur in the present work only for one other state 13Zu+ (see Sect. 4.4). For the state 

1 + 2 N/~ a region of  this type only extends to R ~ 3.0. At the maximum at R ~ 5.0 the two 
first occupation numbers tend to a common value of  0.25, just like for the state 

1 + 1 Zu at greater R. According to the non-crossing rule the two curves avoid each other 
and separate again at greater values of  R. 

The occupation numbers are fourfold degenerate here; apart from the spin degeneracy, 
one NSO with a og and one with a eu space part belongs to each occupation number. 

1 + The natural expansion for the state 1 Zu at small R is given in good approximation 
by 

xp = 2-1/2(llsag2~ulL_ [lsag2paul ) (25) 

which means that the wave function essentially is in accordance with the model. At 
R = 1.75 the natural expansions change quite drastically while the optimized non- 
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linear parameter Zop t changes from the Rydberg model parameter Zopt = 0.5 to 
Zopt = 1.0. The wave function can then be represented approximately by 

q~ = 1/2{(llsog2pOu[ - Ilsog2pOul) - ( l l s o g 3 p O u ] -  Ilsog3pOu[)} (26) 

The first part of Eq. (26) goes over into an ionic function: 

([ tSOg2pau I - [lsag2peu I) -+ (I lsa 1 s a I - [lsb isb[) (27) 

The second part of the wave function in Eq. (26) becomes a mixture of valence bond 
and ionic functions: 

[lsog3paul-+ I l s a ~ l -  [lsa2"bl + I l s o 2 a l -  I]s~2-bl (28) 

The corresponding part of the wave function of Eq. (26) therefore describes the dis- 
sociation into H(ls) + H(2s, 2p) correctly. The first ionic part ( l sog2pou)  obviously 
leads to the relatively broad minimum at an enlarged distance quite analogously to 

1 + the conditions at the second minimum of the state 2 1~g E, F. For medium distances 
the NO's change quite strongly; the ionic part however can be found constantly in 
the natural expansion. For the largest nuclear distance considered here (R = 14.0) 
the natural expansion is given by 

= 1/2{(I lsag3pau [ - [l '~g3pOu l) - ( [2SOg2-~ul - [2SOg2Pau I)} (29) 

In the limit R -+ ~ this function goes over into the pseudo-ionic function 

q~ -+ 1/2{([lsa2a I -  [lsa2al) - ([lsb 2bl - Ilsb2bl)} (30) 

Because the molecule does not dissociate into the ions of high energy the wave func- 
tion will change once again at a still greater internuclear distance. In addition to the 
configurations mentioned by Lewis [41] also pseudo-ionic configurations are of 
importance for the composition of the wave function. 

Up to R 1.5 the natural expansion for the state 1 + = 2 Z u also has a natural expansion 
of Rydberg character: 

= 2-1/2([ lsag3pau I -- l l SOg3pau l) (31) 

However in the region of the minimum (up to R = 3.5) an ionic part and also a Rydberg 
part ( lsog4pOu) are added to this: 

~I' = 2-1/2 (1 /2  [([ lsag2pOul - [ lsag2pOul ) + (l lsog3p'au[ - [1-s-d-g3pOu[ )] 

- (llsag4pOul - [ lSbgapaul))  (32) 

The configuration ( lsag4pOu) also characterizes the increase of the potential curve 
above the dissociation limit. At the point of the avoided crossing at R ~ 7.0 the wave 
function has just the form of Eq. (29), which describes 11~+ approximately for great 

1 + R. The state 1 ~u is determined in the same region by the configurations ( lsog2pOu) 
and (2pau3dog)  both of which go to valence bond and (pseudo-) ionic configurations 
respectively with main quantum numbers 1 and 2 belonging to IF. For very large R 

1 + one has approximately for the state 2 Zu 

~I, = 1/2.~([lsog4fOul - [ l s a g 4 f a u [ ) -  ([2pau3dog[ - [2pou3dagl)}  (33) 
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In analogy to Eq. (30) one obtains for R -+ ~:  

q~-> 1 / 2 { ( l l s a 2 a l -  I ~ a ~ a l ) -  (I l s b R b l -  I ]-~b2"b 1)} (34) 

However in addition to this a valence bond part consisting of  atomic functions which 
are participating in Eq. (34) is admixed to the pseudo-ionic part. Also in this case the 
dissociation is not described correctly by Eq. (34) so that for even larger R the charac- 
ter of  the wave function will change once again. 

4.4. 1 3+I;u, 2 3+Nu, 3 3+2u 

It is well known that the state 13y~u + possesses a repulsive potential curve. Therefore 
this state will be compared with the corresponding 1 l~+-state and the next two higher 
3Z+-states which all have potential minima. 

It is striking that for the repulsive state 13~ + the first occupation number is nearly 
equal to 1.0 for all nuclear distances (see Fig. 8) while all others nearly vanish. This 
confirms the result of  Eliason and Hirschfelder [4J For a + . 1 Zu a similar behaviour 
occurs up to a nuclear distance o f R  ~- 11.0, although the shape of  the potential 
curve is quite different in this case. The difference can be seen from the NO's and 
from the natural expansion (see below). 

The natural expansion for 3 +. 1 s  is given for all distances in good approximation by 

',P = ]lsog2pOu I (35) 

which goes over for R -+ 0 into 

,I, + l ls2pol (36) 

and for R -+ oo into 

~I' -~ Ilsalsbt (37) 

The main quantum number of  the excited orbital changes from 2 at R = 0 and for other 
finite internuclear distances to 1 o f  the H-atom orbital at R -+ o~. 

3 + For the state 2 Eu one has instead of  Eq. (35) 

,Iz = l lsog3pOul (38) 

for R ~ 0 this function tends to 

,I, -+ [ ls3Pol (39) 

For very small values of  R the nuclear charge has the optimized value Zopt = 0.5 of  
the Rydberg model. At the equilibrium distance its value is already 0.78 corresponding 
to a transition to the separated atoms. The natural expansion of  the wave function for 
large R 

~I' = 2-~/2 ([ lsog3pOu [ - 12pau 2SOgl ) (40) 
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tends to the following valence bond function in the limit R -+ oo: 

'.Is -+ 2-1/2([ lsa2b[ - [ lsb2al) (41) 

The natural expansion of  the wave function of the state 33~ + is also similar to that 
given in Eq. (35) for 13Nu: + 

xI, = [ lsog4pau [ (42) 

which for R ~ 0 goes over into 

�9 I' --> [ls4Pol (43) 

An exchange of the composition between the greater and lesser occupied NO occurs 
at the extremal points of the occupation number curves at R = 5.0, which coincides 
with the decrease of the potential curve after the maximum. Concerning the asymp- 
totic behaviour of the natural expansion of the wave function one may expect from 
its composition at R = 14.0 that it will be given by the following equation in analogy 
to gq. (40): 

= 2-1/2(I lsog4fOu [ - [2pau3dagl )  (44) 

Instead of Eq. (41) one has now 

x[/ --> 2 -1/2 (L lsa2"b I - [ lsb~a[) (45) 

4.5. 13"IIu, 13IIg; l lIIu, l lIIg 

In each of the curves of the occupation numbers (see Figs. 1 la, b; 12a, b) for all four 
II-states one can distinguish two regions: up to R ~ 3.5 only one occupation number is 
essentially different from zero. Therefore the natural expansion is approximated by one 
determinant e.g. for 13IIu by 

,Jd = [ lsog2plr+u[ (46) 

and for the other states by one determinant with [tSOg) and the DO of  the corresponding 
symmetry for which Zopt has the optimal value 0.5 to 0.6. These are just the condi- 
tions of the demi-H~-model. Starting from R ~ 3.5 the second occupation number is 
rapidly increasing. For large R the first two occupation numbers have nearly equal 
values./opt then tends to the nuclear charge 1.0 of the separated atoms. All determi- 
nants which may be constructed from the given basis set and which belong to the given 
symmetry type contribute to the natural expansion with coefficients of equal magni- 
tude: 

13IIu: 'Is = 2-x/2([lsog2pTr+[ -12pou3dTrg[ )  (47) 

qJ= 1/2{([ lsog2p?ru[---~- - ] lsog2pTr+[) - ( [  2pou3drr~  - [ 2pou3drrg[+ ) } ll[Iu : 

laI-[g: 

1 lIIg: 

(48) 

= 2-1/2 ([ I sag3dTrgl - [ 2po  u 2pzr~ [) (49) 

q~ = 1/2((1 lsag3d-~g[ --  [lsog3dTrg [) - (12pau 2-~u[ - [ 2--P~u2pZru+[)} 
(5o) 
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For R -+ ~o these functions go over into the following valence bond functions: 

13IIu: g,---, 2-1/2(lls,~2prr~l + Ilsb2prr+al) (51) 

llIIu: g~-+ 1/2(([lsa2-~bl -I~a2pTr~[) + (llsb2--~-a~ --[]Tb2pTra+[)} (52) 

13gig: ~2-a/2( l l sa2pTr~l -  Ilsb2prr+l) (53) 

ling: ~ ~ 1/2{(llsa2prr-~l- I ls--~2prr~[) - (llsb 2prra l - l  1-~-~2prr+l)} (54) 

The curves of the occupation numbers of the IIu-states and the IIg-states respectively 
are quite similar. While for the Hu-states no crossing points occur, the corresponding 
curves of the Jig-states do cross at R ~ 5.0. The decreasing of the potential curves after 
their large maximum coincides with the crossing of the occupation number curves 
for the gig-states. It can be expected that the configuration (lsog3drrg +) is energetically 
higher than (2pou2prr+u) at R ~ 5.0 and that one potential curve with a maximum 
arises from the two [38, 39]. According to this no maximum occurs for the IIu-states 
because at R ~ 5.0 the configuration (lsog2prru +) is present. The slight maximum in the 
potential curve of the state 11 ii u must have another explanation. The curves of the 
occupation numbers are nearly equal to those received by the MO-LCDO method (Fig. 
13a, b and Figs. 1 la and 12a respectively). 

Tile curves of the optimized nuclear charges as functions of the distance R (Fig. 14a: 
13Hu; Fig. 14b: 13Ilg) show the transition to LCAO functions corresponding to the 
strong change of the curves of the occupation numbers. For each of the DO's of 7r- 
type one of the two nuclear charges becomes equal to 1.0 while the other approximates 
0 for R -+ ~. For very small R the nuclear charge Z a takes on values greater than 1.0 
while Zb compensates for this value with a negative charge so that the whole nuclear 
charge is nearly one at each centre for 13IIu. At the equilibrium distance, Z a and Zb 
have LCAO-values while the corresponding parameters for 13IIg have the values of 0.6 
and -0.1 which are quite similar to the demi-H~-model charges. In the region of the 
maximum of the potential curve the nuclear charges rapidly change from these to the 
LCAO-values. 

For the elucidation of the difference between the DO's and the LCAO's the overlap 
integral between the two functions 12p~u)DO and 17ru2p)LCAO as well as between 
13drrg)D o and 17rg2p)LCAO has been maximized for several R. For this reason ZDO 
has been kept constant and ZLCAO has been optimized. Each of the LCAO's has been 
represented by two atomic 2p-functions. For the 7rg-function the optimized parameter 
is approximately equal to 1.0 for the whole region of R and also the overlap integral 
approximates 1.0. The DO and the LCAO show a great similarity in this case. On the 
contrary for the Iru-functions the optimal parameter differs from 1.0, and the overlap 
integral is much smaller, than in the case of the 7rg-functions. This behaviour is in 
accordance with the better representation of the laIIg-state in comparison with the 
13IIu-state by the DO's while 13IIu is well described only by the more flexible LCDO's. 
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5. Conclusion 

The special features like humps and double minima of most of the potential curves of 
the excited states examined can be correlated with striking alterations in the curves of 
the two greatest occupation numbers. However in general an additional consideration 
of the main parts of the natural expansion and their limiting behaviour is necessary 
for the understanding of these properties. 

All but the s can be described by the demi-H~-model for small internuclear dis- 
tances including the equilibrium value Re = 2.0. For the state 1 l~u+ the wave function 
is of a mainly ionic type in the region of the minimum. Tl~e common optimal nuclear 
charge for the ls is given by that of  the separated atoms, which is approached 

3Z+ �9 . also in the calculations of the u-States, For the higher Rydberg states the configura- 
tions of other states with the same symmetry have to be considered. 

1 + Avoided crossings of the potential curves of the Eg- and 3Eff-states respectively can be 
1 + seen from the natural expansion. In the case of the state 3 Eg these lead to a third fiat 

minimum. For greater internuclear distances configuration mixing occurs in general; 
the natural expansion is mainly determined by two configurations for the lower states 

1 + only. So in the region of the second minimum of the state 2 s an ionic part is admixed 
to the natural expansion, like for the 11s state near its broad minimum. The decrease 
of the potential curves with a hump can be attributed to such a part of the natural 
expansion which allows for a correct dissociation of the states. 

From the calculations of the 3II-states it seems that for an improvement of the potential 
curves for medium internuclear distances one has to replace the DO's by LCDO's which 
allow a flexible transition to LCAO functions. 
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